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Announcements

● Problem set 4 released 

● Sign up for Exam 3 on prairietest.com 

http://prairietest.com


● How to know how much memory is being free()’d when we’re only given a 

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit  

● How to pick which free memory chunks to use for allocation? 
○ Many viable options 

● What to do with extra space when allocating a block that is smaller than the free 

block it is placed in?

Implementation Issues



Implicit List: Finding a Free Block

● First fit:
○ Search list from beginning, choose first free block that fits
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Implicit List: Finding a Free Block

● Next fit:
○ Like first fit, but start searching from where previous search finished
○ Often is faster than first fit: avoids re-scanning unhelpful blocks
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Implicit List: Finding a Free Block

● Best fit:
○ Search the list, choosing the best free block: fits with fewest bytes leftover 
○ Will typically run slower than first fit
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Implicit List: Finding a Free Block

● First fit:
○ Search list from beginning, choose first free block that fits

● Next fit:
○ Like first fit, but start searching from where previous search finished
○ Often is faster than first fit: avoids re-scanning unhelpful blocks

● Best fit:
○ Search the list, choosing the best free block: fits with fewest bytes leftover 
○ Will typically run slower than first fit

● Which one is better?
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● How to know how much memory is being free()’d when we’re only given a 

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit  

● How to pick which free memory chunks to use for allocation? 
○ Many viable options First fit, Next fit, Best fit 

● What to do with extra space when allocating a block that is smaller than the free 

block it is placed in?

Implementation Issues
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● How to know how much memory is being free()’d when we’re only given a 

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit  

● How to pick which free memory chunks to use for allocation? 
○ Many viable options First fit, Next fit, Best fit 

● What to do with extra space when allocating a block that is smaller than the free 

block it is placed in?

Implementation Issues



Implicit List: Allocating in a Free Block

20 8 16

p1 = malloc(4)

20 p1 8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Implicit List: Allocating in a Free Block

20 8 16

p1 = malloc(4)

20 p1 8 16

p2 = malloc(6)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte



Implicit List: Allocating in a Free Block

20 8 16

p1 = malloc(4)

20 p1 8 16

Wasted!p2 = malloc(6)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte



Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split 

the free block

20 8 16

p1 = malloc(4)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte



Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split 

the free block

20 8 16

p1 = malloc(4)

8 p1 12

Free block split into allocated block and free block

8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split 

the free block
○ Improves memory utilization! (Is this always true?)

20 8 16

p1 = malloc(4)

8 p1 12

Free block split into allocated block and free block

8 16

p2 = malloc(6) Now possible!

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte



Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split 

the free block
○ Improves memory utilization! (Is this always true?)

20 8 16

p1 = malloc(4)

8 p1 12

Free block split into allocated block and free block

8 16

p2 = malloc(6) Now possible!
Is it always worth it to split your free blocks?

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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● How to know how much memory is being free()’d when we’re only given a 

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit  

● How to pick which free memory chunks to use for allocation? 
○ Many viable options First fit, Next fit, Best fit 

● What to do with extra space when allocating a block that is smaller than the free 

block it is placed in? Splitting

● How to reinsert freed memory into the heap?

Implementation Issues
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● How to know how much memory is being free()’d when we’re only given a 

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit  

● How to pick which free memory chunks to use for allocation? 
○ Many viable options First fit, Next fit, Best fit 

● What to do with extra space when allocating a block that is smaller than the free 

block it is placed in? Splitting

● How to reinsert freed memory into the heap?

Implementation Issues



Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

    size

payload

optional padding

a = 1: allocated block
a = 0: free block

size = block 
size

payload: object data
(allocated blocks only)

a



How to set the is-allocated bit to 0?

● Header: 0x000000C1
○ Assume 4 byte unsigned int
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Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

8 p1 12 8 16

free(p1)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

8 p1 12 8 16

free(p1)

8 12 8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

8 p1 12 8 16

free(p1)

8 12 8 16

malloc(10)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0
○ But leads to poor memory utilization

8 p1 12 8 16

free(p1)

8 12 8 16

malloc(10) Oops!

There is enough free space, but the allocator won’t be able to find it!

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte



Implicit List: Coalescing

● When freeing a block, join (coalesce) it with next/previous blocks, if they are free



Implicit List: Coalescing

● When freeing a block, join (coalesce) it with next/previous 
blocks, if they are free

8 p1 12 8 16

free(p1)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Implicit List: Coalescing

● When freeing a block, join (coalesce) it with next/previous 
blocks, if they are free

8 p1 12 8 16

free(p1)

20 12 8 16

Ignored

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte
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Four cases for coalescing

1. Previous and next blocks are both allocated
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Four cases for coalescing

2. Next block is free
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Four cases for coalescing

3. Previous block is free
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Four cases for coalescing

4. Previous and next blocks are free
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How to find the previous block?

● Search again from the start of the heap to find previous block

● Problem: Time-consuming
○ How can we save time?



How to find the previous block?

● Block footers!

    size

payload + padding

a Block header (4 bytes)

    size a Block footer (4 bytes)

a = 1: allocated 
a = 0: free 
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What tradeoffs do block footers introduce?
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Problem with footers

● Problem: High memory overhead to have footers for ALL blocks



Problem with footers

● Problem: High memory overhead to have footers for ALL blocks

● Solution: Only free blocks have footers
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How to check if previous block is free or not?

● Problem: pointer arithmetic insufficient!
○ If previous block is free: all good!

liv



How to check if previous block is free or not?

● Problem: pointer arithmetic insufficient!
○ If previous block is free: all good!
○ If previous block is allocated: bad!



Storing more metadata in the header

● Structure of allocated block
○ Since memory is 4-byte aligned, the 2 lowest-order address bits are always 0
○ LSB = current block status
○ 2nd LSB = previous block status

  size

payload

optional padding

a
c

a
c
 = 1: current block alloc'd

a
c
 = 0: current block freea

p

a
p
 = 1: current block alloc'd

a
p
 = 0: current block free
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What is the size, current status, and previous status?

● Header = 0x82 => 0x00000082
○ Assume 4-byte unsigned int
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Coalescing with the previous block

● Steps:
○ check previous block status in my header
○ if free: look at footer and use info to update previous block's header (pointer arithmetic!)



When to coalesce?

● Immediate coalescing: coalesce each time free() is called
● Deferred coalescing: try to improve performance of free() by deferring coalescing 

until needed. 
○ Ex:

■ Coalesce as you scan the heap for malloc()
■ Coalesce when the memory utilization reaches some threshold

● Which one is better?
○ Remember throughput vs. memory utilization tradeoff


