
Lecture 16: more malloc() under the hood
CSE 29: Systems Programming and Software Tools

Olivia Weng

Announcements

● Problem set 4 released

● Sign up for Exam 3 on prairietest.com

http://prairietest.com

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

Implicit List: Finding a Free Block

● First fit:
○ Search list from beginning, choose first free block that fits

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

Implicit List: Finding a Free Block

● Next fit:
○ Like first fit, but start searching from where previous search finished
○ Often is faster than first fit: avoids re-scanning unhelpful blocks

liv

liv

liv

liv

liv

liv

Implicit List: Finding a Free Block

● Best fit:
○ Search the list, choosing the best free block: fits with fewest bytes leftover
○ Will typically run slower than first fit

liv

liv

liv

Implicit List: Finding a Free Block

● First fit:
○ Search list from beginning, choose first free block that fits

● Next fit:
○ Like first fit, but start searching from where previous search finished
○ Often is faster than first fit: avoids re-scanning unhelpful blocks

● Best fit:
○ Search the list, choosing the best free block: fits with fewest bytes leftover
○ Will typically run slower than first fit

● Which one is better?

liv

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options First fit, Next fit, Best fit

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

liv

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options First fit, Next fit, Best fit

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

Implicit List: Allocating in a Free Block

20 8 16

p1 = malloc(4)

20 p1 8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

Implicit List: Allocating in a Free Block

20 8 16

p1 = malloc(4)

20 p1 8 16

p2 = malloc(6)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List: Allocating in a Free Block

20 8 16

p1 = malloc(4)

20 p1 8 16

Wasted!p2 = malloc(6)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split

the free block

20 8 16

p1 = malloc(4)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split

the free block

20 8 16

p1 = malloc(4)

8 p1 12

Free block split into allocated block and free block

8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

liv

liv

liv

Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split

the free block
○ Improves memory utilization! (Is this always true?)

20 8 16

p1 = malloc(4)

8 p1 12

Free block split into allocated block and free block

8 16

p2 = malloc(6) Now possible!

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List: Allocating in a Free Block

● Splitting a free block
○ Since object might be smaller than free space, we might want to split

the free block
○ Improves memory utilization! (Is this always true?)

20 8 16

p1 = malloc(4)

8 p1 12

Free block split into allocated block and free block

8 16

p2 = malloc(6) Now possible!
Is it always worth it to split your free blocks?

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options First fit, Next fit, Best fit

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in? Splitting

● How to reinsert freed memory into the heap?

Implementation Issues

liv

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options First fit, Next fit, Best fit

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in? Splitting

● How to reinsert freed memory into the heap?

Implementation Issues

Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

 size

payload

optional padding

a = 1: allocated block
a = 0: free block

size = block
size

payload: object data
(allocated blocks only)

a

How to set the is-allocated bit to 0?

● Header: 0x000000C1
○ Assume 4 byte unsigned int

liv

liv

liv

liv

liv

liv

Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

8 p1 12 8 16

free(p1)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

8 p1 12 8 16

free(p1)

8 12 8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0

8 p1 12 8 16

free(p1)

8 12 8 16

malloc(10)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

Implicit List: Freeing a Block

● Simplest implementation:
○ Need only set the “allocated” flag in header to 0
○ But leads to poor memory utilization

8 p1 12 8 16

free(p1)

8 12 8 16

malloc(10) Oops!

There is enough free space, but the allocator won’t be able to find it!

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List: Coalescing

● When freeing a block, join (coalesce) it with next/previous blocks, if they are free

Implicit List: Coalescing

● When freeing a block, join (coalesce) it with next/previous
blocks, if they are free

8 p1 12 8 16

free(p1)

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

Implicit List: Coalescing

● When freeing a block, join (coalesce) it with next/previous
blocks, if they are free

8 p1 12 8 16

free(p1)

20 12 8 16

Ignored

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

liv

liv

liv

Four cases for coalescing

1. Previous and next blocks are both allocated

liv

Four cases for coalescing

2. Next block is free

liv

Four cases for coalescing

3. Previous block is free

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

Four cases for coalescing

4. Previous and next blocks are free

liv

How to find the previous block?

● Search again from the start of the heap to find previous block

● Problem: Time-consuming
○ How can we save time?

How to find the previous block?

● Block footers!

 size

payload + padding

a Block header (4 bytes)

 size a Block footer (4 bytes)

a = 1: allocated
a = 0: free

liv

liv

liv

liv

What tradeoffs do block footers introduce?

liv

Problem with footers

● Problem: High memory overhead to have footers for ALL blocks

Problem with footers

● Problem: High memory overhead to have footers for ALL blocks

● Solution: Only free blocks have footers

liv

How to check if previous block is free or not?

● Problem: pointer arithmetic insufficient!
○ If previous block is free: all good!

liv

How to check if previous block is free or not?

● Problem: pointer arithmetic insufficient!
○ If previous block is free: all good!
○ If previous block is allocated: bad!

Storing more metadata in the header

● Structure of allocated block
○ Since memory is 4-byte aligned, the 2 lowest-order address bits are always 0
○ LSB = current block status
○ 2nd LSB = previous block status

 size

payload

optional padding

a
c

a
c
 = 1: current block alloc'd

a
c
 = 0: current block freea

p

a
p
 = 1: current block alloc'd

a
p
 = 0: current block free

liv

liv

liv

What is the size, current status, and previous status?

● Header = 0x82 => 0x00000082
○ Assume 4-byte unsigned int

liv

liv

liv

liv

liv

liv

liv

liv

liv

Coalescing with the previous block

● Steps:
○ check previous block status in my header
○ if free: look at footer and use info to update previous block's header (pointer arithmetic!)

When to coalesce?

● Immediate coalescing: coalesce each time free() is called
● Deferred coalescing: try to improve performance of free() by deferring coalescing

until needed.
○ Ex:

■ Coalesce as you scan the heap for malloc()
■ Coalesce when the memory utilization reaches some threshold

● Which one is better?
○ Remember throughput vs. memory utilization tradeoff

