Lecture |5:malloc() under the hood
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Review: Pointer arithmetic

e General rule:ptr + n = ptr + n * sizeof(type)
char str[] = "Hi CSE29!";
char strl[] = "30?";

strncpy(str + 6, strl, strlen(strl));

printf("%s\n", str);



Announcements

e Sign up for Exam 3 on prairietest.com

o  Can even sign up for makeup!

® Problem set 4 will be released today


http://prairietest.com

How do malloc() and free() work?



What are malloc() and free() trying to solve?



malloc()

® Solves:allocating memory of any size for data that exists longer than a function call

o Why!

0  So we can access the data as long as we need it, beyond the function it was created in
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Memory Allocation

e Application wants memory for its heap

o  OS provides chunks of memory via mmap ()

o  But, application objects are typically smaller than these chunks

e Memory allocator: manages objects within these chunks
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Memory Allocation

e Application wants memory for its heap

(@)

(@)

OS provides chunks of memory via mmap ()
But, application objects are typically smaller than these chunks
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e Memory allocator: manages objects within these chunks

mmap ()

Object
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malloc() decides:
® Where to place object
e How to manage free memory
e When to call mmap ()
e And more...



malloc() Requirements

e #Hinclude <stdlib.h>

e void *malloc(size t size)
o  Returns pointer to memory of at least size bytes, aligned to (typically, on Linux) 8 bytes

e void free(void *ptr)
o  Returns the memory pointed to by ptr to pool of free memory space
o  ptr must have come from a previous call to malloc()
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Performance Goals:malloc() & free()

e Maximize Throughput
o  Throughput: Number of completed requests per unit time
o Ex:
m 5,000malloc() calls and 5,000 free() calls in 10 seconds
m  Throughput = 1,000 memory operations / second

e Maximize Peak Memory Utilization
o Memory Utilization: Size of currently allocated memory / Size of all requested mmap () memory
o Peak Memory Utilization: How well you are using the memory you've requested
m  Highest utilization possible = |



Poor memory utilization

e Fragmentation:When free chunks of memory are only available in small fragments

o  This is bad because it becomes difficult to allocate big contiguous chunks of memory




Good memory utilization

e Not a lot of fragmentation




How to maximize throughput?

e Throughput = # operations / second

e Minimize average time it takes to complete an operation, either malloc() or
free()
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How to maximize memory utilization?

e Memory utilization =

o  Size of currently allocated memory / Size of requested mmap () memory

® Use up as much of the memory that you already have

e Consider:

o  Can | use/reuse free memory or must | ask the OS for more memory via mmap ()?



Maximizing throughput often conflicts with maximizing memory utilization



Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)?
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?
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Assumptions made in this lecture

e Memory is 4-byte addressed and 4-byte aligned

® Allocated bytes make up an allocated block of memory

e Free bytes make up a free block of memory
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Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block
o This is often called the header field or header

o  Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

e Consider p1 = malloc(6);

E L HE .

block size = 4 byte header Header byte
+ 6 byte object
+ 2 bytes padding

Allocated byte

Padding byte
|2 bytes allocated total Ing by

Free byte

Byte whose address

[]

o,
(e}

4 == 0



Knowing How Much to Free

e To free(pl)

o  Check header in preceding aligned block to know how much memory to free
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Knowing How Much to Free

e To free(pl)

o  Check header in preceding aligned block to know how much memory to free

|12

Lo
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Knowing How Much to Free

e To free(pl)

o  Check header in preceding aligned block to know how much memory to free

I

| need to free 12 bytes total! Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

[]
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Keeping Track of Free Blocks

® Use pointer arithmetic to traverse the heap and find free blocks

/\1

2

\

Header byte

Allocated byte

Padding byte

Free byte

Byte whose address

o,
(e}

4 == 0



Implicit List

e “Implicit List” ==“Implicit Linked List”

o0 Use the lengths to traverse the memory blocks via pointer arithmetic

2

Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0




Implicit List

e For each memory allocation, we need:
o Length
o Is-allocated?
e Could store this information in the preceding 4-byte aligned block

o  This is wasteful!

Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0




Implicit List

e Standard trick

o  Since memory is 4-byte aligned, the 2 lowest-order address bits are always 0

o LSB ==1 ? allocated : !allocated

size a

payload

optional padding

1: allocated block
9: free block

0
i

size = block size

payload: object data
(allocated blocks only)



What is the block size and allocated status!?

e Header = 0xCl



What is the block size and allocated status!?

e Header = 0xCl

o Block size = 192
o allocated: |



How can | get the size in C!

e Header = OxCIl => 0x000000C|

o  Assume 64-bit addresses



How can | get the size in C!

® Header = OxCI| => 0x000000CI|

o  Assume 64-bit addresses

e Bit masking!
o  Mask = OxFFFFFFFE or (~0xl)



How can | get the is-allocated status in C?

e Header = OxCI| => 0x000000CI

o  Assume 64-bit addresses
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Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks? Implicit list + is-allocated bit

® How to pick which free memory chunks to use for allocation?
o Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?



Implicit List: Finding a Free Block

e First fit;

o  Search list from beginning, choose first free block that fits



