Lecture |5:malloc() under the hood

CSE 29: Systems Programming and Software Tools

Olivia Weng

Review: Pointer arithmetic

e General rule:ptr + n = ptr + n * sizeof(type)
char str[] = "Hi CSE29!";
char strl[] = "30?";

strncpy(str + 6, strl, strlen(strl));

printf("%s\n", str);

Announcements

e Sign up for Exam 3 on prairietest.com

o Can even sign up for makeup!

® Problem set 4 will be released today

http://prairietest.com

How do malloc() and free() work?

What are malloc() and free() trying to solve?

malloc()

® Solves:allocating memory of any size for data that exists longer than a function call

o Why!

0 So we can access the data as long as we need it, beyond the function it was created in

Memory Allocation

Application wants memory for its heap

Application

Memory

Memory Allocation

Application wants memory for its heap

(@)

OS provides chunks of memory via mmap ()

mmap ()

4 kB

Application

Memory

Memory Allocation

Application wants memory for its heap

(@)

(@)

OS provides chunks of memory via mmap ()

But, application objects are typically smaller than these chunks

mmap ()

Object

4 kB

Application

Memory

Memory Allocation

e Application wants memory for its heap

o OS provides chunks of memory via mmap ()

o But, application objects are typically smaller than these chunks

e Memory allocator: manages objects within these chunks

mmap ()

Object

+ 4kB

Application

Memory Allocator

Memory

Memory Allocation

e Application wants memory for its heap

(@)

(@)

OS provides chunks of memory via mmap ()
But, application objects are typically smaller than these chunks

Application

Memory Allocator

Memory

e Memory allocator: manages objects within these chunks

mmap ()

Object

4 kB

malloc() decides:
® Where to place object
e How to manage free memory
e When to call mmap ()
e And more...

malloc() Requirements

e #Hinclude <stdlib.h>

e void *malloc(size t size)
o Returns pointer to memory of at least size bytes, aligned to (typically, on Linux) 8 bytes

e void free(void *ptr)
o Returns the memory pointed to by ptr to pool of free memory space
o ptr must have come from a previous call to malloc()

Performance Goals:malloc() & free()

Performance Goals:malloc() & free()

e Maximize Throughput

o Throughput: Number of completed requests per unit time

Performance Goals:malloc() & free()

e Maximize Throughput
o Throughput: Number of completed requests per unit time
o Ex:
m 5,000malloc() calls and 5,000 free() calls in 10 seconds
m Throughput = 1,000 memory operations / second

Performance Goals:malloc() & free()

e Maximize Throughput

o Throughput: Number of completed requests per unit time

o Ex:
m 5,000malloc() calls and 5,000 free() calls in 10 seconds
m Throughput = 1,000 memory operations / second

e Maximize Peak Memory Utilization

o Memory Utilization: Size of currently allocated memory / Size of all requested mmap () memory

Performance Goals:malloc() & free()

e Maximize Throughput
o Throughput: Number of completed requests per unit time
o Ex:
m 5,000malloc() calls and 5,000 free() calls in 10 seconds
m Throughput = 1,000 memory operations / second

e Maximize Peak Memory Utilization
o Memory Utilization: Size of currently allocated memory / Size of all requested mmap () memory
o Peak Memory Utilization: How well you are using the memory you've requested
m Highest utilization possible = |

Poor memory utilization

e Fragmentation:When free chunks of memory are only available in small fragments

o This is bad because it becomes difficult to allocate big contiguous chunks of memory

Good memory utilization

e Not a lot of fragmentation

How to maximize throughput?

e Throughput = # operations / second

e Minimize average time it takes to complete an operation, either malloc() or
free()

How to maximize memory utilization?

e Memory utilization =

o Size of currently allocated memory / Size of requested mmap () memory

How to maximize memory utilization?

e Memory utilization =

o Size of currently allocated memory / Size of requested mmap () memory

® Use up as much of the memory that you already have

How to maximize memory utilization?

e Memory utilization =

o Size of currently allocated memory / Size of requested mmap () memory

® Use up as much of the memory that you already have

e Consider:

o Can | use/reuse free memory or must | ask the OS for more memory via mmap ()?

Maximizing throughput often conflicts with maximizing memory utilization

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)?
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)?
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Assumptions made in this lecture

e Memory is 4-byte addressed and 4-byte aligned

® Allocated bytes make up an allocated block of memory

e Free bytes make up a free block of memory

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block
o This is often called the header field or header

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block
o This is often called the header field or header
o Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block

o This is often called the header field or header

o Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

e Consider p1 = malloc(6);
I 12 I pl
block size

[]

Header byte
Allocated byte
Padding byte
Free byte

Byte whose address % 4 ==

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block
o This is often called the header field or header

o Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

e Consider p1 = malloc(6);

E L HE .

block size = 4 byte header Header byte
+ 6 byte object
+ 2 bytes padding

Allocated byte

Padding byte
|2 bytes allocated total Ing by

Free byte

Byte whose address

[]

o,
(e}

4 == 0

Knowing How Much to Free

e To free(pl)

o Check header in preceding aligned block to know how much memory to free

|12

Lo

[]

Header byte
Allocated byte
Padding byte
Free byte

Byte whose address

o,
(e}

4 == 0

Knowing How Much to Free

e To free(pl)

o Check header in preceding aligned block to know how much memory to free

|12

Lo

I

| need to free 12 bytes total!

[]

Header byte
Allocated byte
Padding byte
Free byte

Byte whose address

o,
(e}

4 == 0

Knowing How Much to Free

e To free(pl)

o Check header in preceding aligned block to know how much memory to free

I

| need to free 12 bytes total! Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

[]

Implementation Issues

e How to know how much memory is being free()’d when we're only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Keeping Track of Free Blocks

® Use pointer arithmetic to traverse the heap and find free blocks

/\1

2

\

Header byte

Allocated byte

Padding byte

Free byte

Byte whose address

o,
(e}

4 == 0

Implicit List

e “Implicit List” ==“Implicit Linked List”

o0 Use the lengths to traverse the memory blocks via pointer arithmetic

2

Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

Implicit List

e For each memory allocation, we need:
o Length
o Is-allocated?
e Could store this information in the preceding 4-byte aligned block

o This is wasteful!

Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

Implicit List

e Standard trick

o Since memory is 4-byte aligned, the 2 lowest-order address bits are always 0

o LSB ==1 ? allocated : !allocated

size a

payload

optional padding

1: allocated block
9: free block

0
i

size = block size

payload: object data
(allocated blocks only)

What is the block size and allocated status!?

e Header = 0xCl

What is the block size and allocated status!?

e Header = 0xCl

o Block size = 192
o allocated: |

How can | get the size in C!

e Header = OxCIl => 0x000000C|

o Assume 64-bit addresses

How can | get the size in C!

® Header = OxCI| => 0x000000CI|

o Assume 64-bit addresses

e Bit masking!
o Mask = OxFFFFFFFE or (~0xl)

How can | get the is-allocated status in C?

e Header = OxCI| => 0x000000CI

o Assume 64-bit addresses

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks? Implicit list + is-allocated bit

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks? Implicit list + is-allocated bit

® How to pick which free memory chunks to use for allocation?
o Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implicit List: Finding a Free Block

e First fit;

o Search list from beginning, choose first free block that fits

