
Lecture 15: malloc() under the hood
CSE 29: Systems Programming and Software Tools

Olivia Weng

Review: Pointer arithmetic

● General rule: ptr + n = ptr + n * sizeof(type)

char str[] = "Hi CSE29!";

char str1[] = "30?";

strncpy(str + 6, str1, strlen(str1));

printf("%s\n", str);

Announcements

● Sign up for Exam 3 on prairietest.com
○ Can even sign up for makeup!

● Problem set 4 will be released today

http://prairietest.com

How do malloc() and free() work?

What problem are malloc() and free() trying to solve?

malloc()

● Solves: allocating memory of any size for data that exists longer than a function call

● Why?
○ So we can access the data as long as we need it, beyond the function it was created in

Memory Allocation

● Application wants memory for its heap
Memory

Application

Memory Allocation

● Application wants memory for its heap
○ OS provides chunks of memory via mmap()

mmap()

Memory

4 kB

Application

Memory Allocation

● Application wants memory for its heap
○ OS provides chunks of memory via mmap()
○ But, application objects are typically smaller than these chunks

mmap()

4 kB

Object

Memory

Application

Memory Allocation

● Application wants memory for its heap
○ OS provides chunks of memory via mmap()
○ But, application objects are typically smaller than these chunks

● Memory allocator: manages objects within these chunks

mmap()

4 kB

Object

Application

Memory Allocator

Memory

Memory Allocation

● Application wants memory for its heap
○ OS provides chunks of memory via mmap()
○ But, application objects are typically smaller than these chunks

● Memory allocator: manages objects within these chunks

mmap()

4 kB

Object

Application

Memory Allocator

Memory

malloc() decides:
● Where to place object
● How to manage free memory
● When to call mmap()
● And more...

malloc() Requirements

● #include <stdlib.h>

● void *malloc(size_t size)
○ Returns pointer to memory of at least size bytes, aligned to (typically, on Linux) 8 bytes

● void free(void *ptr)
○ Returns the memory pointed to by ptr to pool of free memory space
○ ptr must have come from a previous call to malloc()

Performance Goals: malloc() & free()

● Maximize Throughput
○ Throughput: Number of completed requests per unit time

Performance Goals: malloc() & free()

● Maximize Throughput
○ Throughput: Number of completed requests per unit time
○ Ex:

■ 5,000 malloc() calls and 5,000 free() calls in 10 seconds
■ Throughput = 1,000 memory operations / second

Performance Goals: malloc() & free()

● Maximize Throughput
○ Throughput: Number of completed requests per unit time
○ Ex:

■ 5,000 malloc() calls and 5,000 free() calls in 10 seconds
■ Throughput = 1,000 memory operations / second

● Maximize Peak Memory Utilization
○ Memory Utilization: Size of currently allocated memory / Size of all requested mmap() memory

Performance Goals: malloc() & free()

● Maximize Throughput
○ Throughput: Number of completed requests per unit time
○ Ex:

■ 5,000 malloc() calls and 5,000 free() calls in 10 seconds
■ Throughput = 1,000 memory operations / second

● Maximize Peak Memory Utilization
○ Memory Utilization: Size of currently allocated memory / Size of all requested mmap() memory
○ Peak Memory Utilization: How well you are using the memory you’ve requested

■ Highest utilization possible = 1

Performance Goals: malloc() & free()

Poor memory utilization

● Fragmentation: When free chunks of memory are only available in small fragments
○ This is bad because it becomes difficult to allocate big contiguous chunks of memory

Good memory utilization

● Not a lot of fragmentation

How to maximize throughput?

● Throughput = # operations / second

● Minimize average time it takes to complete an operation, either malloc() or
free()

How to maximize memory utilization?

● Memory utilization =
○ Size of currently allocated memory / Size of requested mmap() memory

How to maximize memory utilization?

● Memory utilization =
○ Size of currently allocated memory / Size of requested mmap() memory

● Use up as much of the memory that you already have

How to maximize memory utilization?

● Memory utilization =
○ Size of currently allocated memory / Size of requested mmap() memory

● Use up as much of the memory that you already have

● Consider:
○ Can I use/reuse free memory or must I ask the OS for more memory via mmap()?

Maximizing throughput often conflicts with maximizing memory utilization

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)?

● How to keep track of free memory blocks?

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)?

● How to keep track of free memory blocks?

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

Assumptions made in this lecture

● Memory is 4-byte addressed and 4-byte aligned

● Allocated bytes make up an allocated block of memory

● Free bytes make up a free block of memory

Knowing How Much to Free

● Keep the length of allocated memory in the preceding aligned block
○ This is often called the header field or header

Knowing How Much to Free

● Keep the length of allocated memory in the preceding aligned block
○ This is often called the header field or header
○ Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

Knowing How Much to Free

● Keep the length of allocated memory in the preceding aligned block
○ This is often called the header field or header
○ Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

● Consider p1 = malloc(6);

12 p1

block size

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Knowing How Much to Free

● Keep the length of allocated memory in the preceding aligned block
○ This is often called the header field or header
○ Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

● Consider p1 = malloc(6);

block size = 4 byte header
+ 6 byte object
+ 2 bytes padding

12 bytes allocated total

12 p1

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Knowing How Much to Free

● To free(p1)
○ Check header in preceding aligned block to know how much memory to free

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

12 p1

Knowing How Much to Free

● To free(p1)
○ Check header in preceding aligned block to know how much memory to free

I need to free 12 bytes total!

12 p1

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Knowing How Much to Free

● To free(p1)
○ Check header in preceding aligned block to know how much memory to free

I need to free 12 bytes total!

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks?

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks?

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

Keeping Track of Free Blocks

● Use pointer arithmetic to traverse the heap and find free blocks

8 12 p2 8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List

● “Implicit List” == “Implicit Linked List”
○ Use the lengths to traverse the memory blocks via pointer arithmetic

8 12 p2 8 16

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List

● For each memory allocation, we need:
○ Length
○ Is-allocated?

● Could store this information in the preceding 4-byte aligned block
○ This is wasteful!

Allocated byte

Padding byte

Free byte

Byte whose address % 4 == 0

Header byte

Implicit List

● Standard trick
○ Since memory is 4-byte aligned, the 2 lowest-order address bits are always 0
○ LSB == 1 ? allocated : !allocated

 size

payload

optional padding

a a = 1: allocated block
a = 0: free block

size = block size

payload: object data
(allocated blocks only)

What is the block size and allocated status?

● Header = 0xC1

What is the block size and allocated status?

● Header = 0xC1
○ Block size = 192
○ allocated: 1

How can I get the size in C?

● Header = 0xC1 => 0x000000C1
○ Assume 64-bit addresses

How can I get the size in C?

● Header = 0xC1 => 0x000000C1
○ Assume 64-bit addresses

● Bit masking!
○ Mask = 0xFFFFFFFE or (~0x1)

How can I get the is-allocated status in C?

● Header = 0xC1 => 0x000000C1
○ Assume 64-bit addresses

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

● How to know how much memory is being free()’d when we’re only given a

pointer (and no length)? Use headers

● How to keep track of free memory blocks? Implicit list + is-allocated bit

● How to pick which free memory chunks to use for allocation?
○ Many viable options

● What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

Implicit List: Finding a Free Block

● First fit:
○ Search list from beginning, choose first free block that fits

