Lecture |5:malloc() under the hood

CSE 29: Systems Programming and Software Tools

Olivia Weng

Review: Pointer arithmetic .
L YwAerpreks ¢ L¢ke tlic

lw C
e General rule:ptr + n = ptr + n * sizeof(type)
char str[] = "Hi CSEy9!"; N avvl = 0/\)1’%'
113 4sh " }
char stri[] = "30?"; N *P-w = o\v\//‘// 0x (6D
strncpy(str + 6, strl, strlen(strl)); &
- - = cEL
- 3 r -
/.;
printf("%s\n", str); GK 108

Lo W CS5307 2

<

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

Announcements

e Sign up for Exam 3 on prairietest.com

o Can even sign up for makeup!

® Problem set 4 will be released today

http://prairietest.com

How do malloc() and free() work?

liv

liv

liv

What are malloc() and free() trying to solve?

malloc()

® Solves:allocating memory of any size for data that exists longer than a function call

o Why!

0 So we can access the data as long as we need it, beyond the function it was created in

v S——

—

liv

Memory Allocation

Application wants memory for its heap

Application

Memory

Memory Allocation

Application wants memory for its heap

(@)

OS provides chunks of memory via mmap ()
——

mmap ()

4 kB

Application

Memory

liv

Memory Allocation

e Application wants memory for its heap

o OS provides chunks of memory via mmap ()

o But, application objects are typically smaller than these chunks

mmap ()

Object

\

+ 4kB

Application

Memory

liv

Memory Allocation

e Application wants memory for its heap

o OS provides chunks of memory via mmap ()

o But, application objects are typically smaller than these chunks

e Memory allocator: manages objects within these chunks

mmap ()

Object

+ 4kB

Application

Memory Allocator

Memory

Memory Allocation

e Application wants memory for its heap

(@)

(@)

OS provides chunks of memory via mmap ()
But, application objects are typically smaller than these chunks

Application

Memory Allocator

Memory

e Memory allocator: manages objects within these chunks

mmap ()

Object

4 kB

malloc() decides:
® Where to place object
e How to manage free memory
e When to call mmap ()
e And more...

malloc() Requirements

e #Hinclude <stdlib.h>

e void *malloc(size t size)
o Returns pointer to memory of at least size bytes, aligned to (typically, on Linux) 8 bytes

e void free(void *ptr)
o Returns the memory pointed to by ptr to pool of free memory space
o ptr must have come from a previous call to malloc()

Performance Goals:malloc() & free()

Performance Goals:malloc() & free()

e Maximize Throughput

o Throughput: Number of completed requests per unit time

Performance Goals:malloc() & free()

e Maximize Throughput
o Throughput: Number of completed requests per unit time
_ |0, 00/(3/ 4
o Ex: —
m 5,000malloc() calls and 5,000 free() calls in 10 seconds l%j
m Throughput = 1,000 memory operations / second

—

liv

liv

Performance Goals:malloc() & free()

e Maximize Throughput

o Throughput: Number of completed requests per unit time

o Ex:
m 5,000malloc() calls and 5,000 free() calls in 10 seconds
m Throughput = 1,000 memory operations / second

e Maximize Peak Memory Utilization

o Memory Utilization: Size of currently allocated memory / Size of all requested mmap () memory

Performance Goals:malloc() & free()

e Maximize Throughput
o Throughput: Number of completed requests per unit time
o Ex:
m 5,000malloc() calls and 5,000 free() calls in 10 seconds
m Throughput = 1,000 memory operations / second

e Maximize Peak Memory Utilization
o Memory Utilization: Size of currently allocated memory / Size of all requested mmap () memory
o Peak Memory Utilization: How well you are using the memory you've requested
m Highest utilization possible = |

Poor memory utilization

e Fragmentation:When free chunks of memory are only available in small fragments

o This is bad because it becomes difficult to allocate big contiguous chunks of memory

Good memory utilization

e Not a lot of fragmentation

How to maximize throughput?

e Throughput = # operations / L

e Minimize average time it takes to complete an operation, either malloc() or
free()

liv

liv

How to maximize memory utilization?

e Memory utilization =

o Size of currently allocated memory / Size of requested mmap () memory

How to maximize memory utilization?

e Memory utilization =

o Size of currently allocated memory / Size of requested mmap () memory

® Use up as much of the memory that you already have

How to maximize memory utilization?

e Memory utilization =

o Size of currently allocated memory / Size of requested mmap () memory

® Use up as much of the memory that you already have

e Consider:

o Can | use/reuse free memory or must | ask the OS for more memory via mmap ()?

Maximizing throughput often conflicts with maximizing memory utilization

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)?
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)?
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Assumptions made in this lecture

e Memory is 4-byte addressed and 4-byte aligned

® Allocated bytes make up an allocated block of memory

e Free bytes make up a free block of memory

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block
o This is often called the header field or header

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block
o This is often called the header field or header
o Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block

o This is often called the header field or header

o Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

e Consider p1 = malloc(6);
I 12 I pl I
block size

[]

Header byte
Allocated byte
Padding byte
Free byte

Byte whose address % 4 ==

liv

Knowing How Much to Free

e Keep the length of allocated memory in the preceding aligned block

o This is often called the header field or header

o Since we are 4-byte addressed, we require 4 extra bytes to store header for every allocated block

e Consider p1 = malloc(6);

hoed v

[22 [1 |

‘JfA\i‘OP\A

a8

I

block size = 4 byte header
+ 6 byte object
+ 2 bytes padding

|2 bytes allocated total

[N L

[]

Header byte
Allocated byte
Padding byte
Free byte

Byte whose address % 4 ==

liv

liv

Knowing How Much to Free

e To free(pl)

o Check header in preceding aligned block to know how much memory to free

E L HE .

Header byte
‘?
Q'VQL Allocated byte

Padding byte

Free byte

Byte whose address % 4 ==

[]

liv

liv

Knowing How Much to Free

e To free(pl)

o Check header in preceding aligned block to know how much memory to free

|12

Lo

I

| need to free 12 bytes total!

[]

Header byte
Allocated byte
Padding byte
Free byte

Byte whose address

o,
(e}

4 == 0

Knowing How Much to Free

e To free(pl)

o Check header in preceding aligned block to know how much memory to free

I

| need to free 12 bytes total! Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

[]

Implementation Issues

e How to know how much memory is being free()’d when we're only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks?

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Keeping Track of Free Blocks

® Use pointer arithmetic to traverse the heap and find free blocks

/\1

2

\

Header byte

Allocated byte

Padding byte

Free byte

Byte whose address

o,
(e}

4 == 0

Implicit List

e “Implicit List” ==“Implicit Linked List”

o0 Use the lengths to traverse the memory blocks via pointer arithmetic

2

Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

Implicit List

e For each memory allocation, we need:

o Length [

o Is-allocated?

e Could store this information in the preceding 4-byte aligned block

o This is wasteful!

Header byte

Allocated byte

Padding byte

Free byte

0,

Byte whose address % 4 == 0

liv

”\7‘\) c@]b\ = 1%

Implicit List

e Standard trick

o Since memory is 4-byte aligned, the 2 lowest-order address bits are always 0

o LSB == 1 ? allocated : !allocated -
5%
)
) size g a = 1:allocated block
a = 0O:free block
payload

size = block size

payload: object data

optional padding (allocated blocks only)

liv

liv

liv

liv

liv

liv

liv

What is the block size and allocated status!?

o Hedrsocl A2 = bbb
|00 DoOO P K
1100 vodfy

|[00 000 = Ylck 12t

- = Yolocletiza
®$CO 2 lO”/D: Wk &\\oca-w/qc&ﬂ\

liv

liv

liv

liv

liv

liv

liv

liv

What is the block size and allocated status!?

e Header = 0xCl

o Block size = 192
o allocated: |

_

liv

plocle
How can | get the)\size in C?

o Header = 0xCl => 0x0000 3 CN] >

o Assume it addresses
A

T OxFFFEFFRE

T Dy 000000%0

~ bl ¢rua

liv

liv

liv

liv

liv

liv

liv

How can | get the size in C!

® Header = OxCI| => 0x000000CI|

o Assume 64-bit addresses

e Bit masking!
o Mask = OxFFFFFFFE or (~0xl)

How can | get the is-allocated status in C?

—_—

e Header = 0xCl => 0x000000C| § Ox| = vt vw»ﬁbké.

o Assume %bit addresses ~— S

ﬂO{COdo“mo 1

~ (Qy000000% 1

liv

liv

liv

liv

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks? Implicit list + is-allocated bit

e How to pick which free memory chunks to use for allocation?
o0 Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implementation Issues

e How to know how much memory is being free()’d when we’re only given a
pointer (and no length)? Use headers
e How to keep track of free memory blocks? Implicit list + is-allocated bit

® How to pick which free memory chunks to use for allocation?
o Many viable options

e What to do with extra space when allocating a block that is smaller than the free

block it is placed in?

Implicit List: Finding a Free Block
w\h[,l.ac,(?j

-

e First fit:

o Search list from beginning, choose first free block that fits

S [ol
Stav: N ‘(
& Tl fre bl

liv

liv

liv

