
Lecture 9: file i/o & struct your stuff
CSE 29: Systems Programming and Software Tools

Olivia Weng



What is file I/O?

● I/O = input/output
● What can we do with files?

○ fopen(): Open a file
○ fclose(): Close a file
○ fgets(): Read a string from a file
○ fprintf(): Write to a file
○ and more!

● We take input from STDIN and output to STDOUT…
○ In Unix, everything is a file!
○ STDIN and STDOUT are files



What if I don't close a file?

● Usually the OS will close it for you, but weird things can happen…
○ The file doesn't get written to disk and just sits in RAM
○ Opening files will start to fail



Demo

● read_and_write_a_file()



Why not store everything in files?

● Computer has many kinds of memory and storage



Why not store everything in files?

● Memory hierarchy



How can I represent Cartesian coordinates?



Introducing struct datatype

● Up until now, all variables have been either single elements or arrays
○ Example: Cartesian coordinates

int x; 

int y;

● The struct datatype can combine elements into one variable 

struct point {

int x;

int y;

};



Using struct datatypes

struct point {

int x; // data member

int y;

};

int main() {

struct point p;

p.x = 3;

p.y = 4;

// or struct point p = {3, 4};

}

…

…

3 (p.x)

4 (p.y)

…

0x10C

0x108

0x104

0x100



Demo

struct point new_point(int x, int y);



Passing a struct to a function

double distance(struct point p1, struct point p2) {

// demo

}

int main() {

struct point p1 = new_point(0, 0);

struct point p2 = new_point(3, 4);

double dist = distance(p1, p2); // structs passed by value

}



structs are copied when passed as arguments to function

● Any issues with this?



How can we avoid copying structs and wasting memory?



How can we avoid copying structs?

● Pointers!

int main() {

struct point p1;

struct point *pp1 = &p1;

p->x = 0;

p->y = 0;

}



Passing struct to a function using pointers

double distance_v2(struct point *p1, struct point *p2) {

// demo

}


