
Lecture 10: Heap memory
CSE 29: Systems Programming and Software Tools

Olivia Weng



Announcements

● Problem set 2 due tomorrow at 10am PT

● Initial grades released

● Exam 1



Demo

int *reverse(int arr[], int n) {
int reversed[n];
for (int i = 0; i < n; i++) {

reversed[i] = arr[n - i - 1];
}
int *to_return = reversed;
return to_return;

}

int main() {
int arr[3] = {10, 20, 30};
int *reversed = reverse(arr, 3);
for (int i = 0; i < 3; i++) {

printf("%d\n", reversed[i]);
}

}

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv



What is the heap for?

liv

liv

liv

liv



Heap memory

● Heap memory can be accessed from any function as long as we have pointers to it

● What if we want to create an array that persists after a function returns?
○ Use the heap!

liv

liv

liv



How to request memory from the heap?

● malloc(num_bytes)
○ stands for "memory allocate"
○ returns the address of the first byte in the memory allocated
○ part of stdlib.h

● Example: variable-length array (length of the array changes over time)

int *pa = malloc(3 * sizeof(int));

// can do whatever array things I want with pa



Demo

● reverse_fix()



reverse_fix()

int *reverse_fix(int arr[], int n) {
    int *reversed = malloc(n * sizeof(int));
    if (reversed == NULL) {
        printf("Memory allocation failed!\n");
        return NULL;
    }
    for (int i = 0; i < n; i++) {
        reversed[i] = arr[n - i - 1];
    }
    return reversed;
}

liv

liv

liv

liv

liv

liv

liv

liv

liv

liv



What happens to heap memory after malloc()?

● Heap memory stays there forever so other functions can use it
○ Nice, but what happens when you're done?



We must free() the heap

● free(void *ptr)
○ Tells the heap to free memory that it allocated at this pointer
○ Now other processes can use it

● What happens if we do not free()?
○ Memory leak!
○ Performance degradation (slow down the computer)
○ Other processes cannot get the memory they need

liv

liv



Demo

● valgrind

liv



With heap memory, comes great responsibility

● You are responsible for the memory you request from the heap
○ Manual memory management
○ Each call to malloc() should have a corresponding call to free() to prevent memory leaks

● What if I call free() on memory that has already been freed?
○ Usually segfault (depends on the system)!

● What if I call free() on memory that was never malloc'd?
○ segfault!

liv

liv

liv

liv



Memory APIs

● malloc(): allocate memory on the heap

int *pa = malloc(10 * sizeof(int));

● free(): free allocated memory

free(pa);

● calloc(): similar to malloc but zeros out allocated memory

int *pa = calloc(10, sizeof(int));

● realloc(): increase or decrease size of an allocation
○ grows or shrinks the heap allocation or copies the data to a new allocation if needed

pa = realloc(pa, 20 * sizeof(int));

liv

liv

liv

liv

liv



Creating structures on the heap

struct point *p = malloc(...);

p->x = 3;

p->y = 4;

// … do something with p

free(p); // important!

liv

liv

liv

liv

liv

liv



Creating structures on the heap

struct point *p = malloc(sizeof(struct point));

p->x = 3;

p->y = 4;

// … do something with p

free(p); // important!

liv

liv

liv

liv

liv

liv



Demo

● Strings in python



How could we implement a String class in C?

liv



How could we implement a String class in C?

struct string {

uint64_t length; // = strlen(contents)

char *contents; // has space for length + null terminator

};

typedef struct string String;

liv


