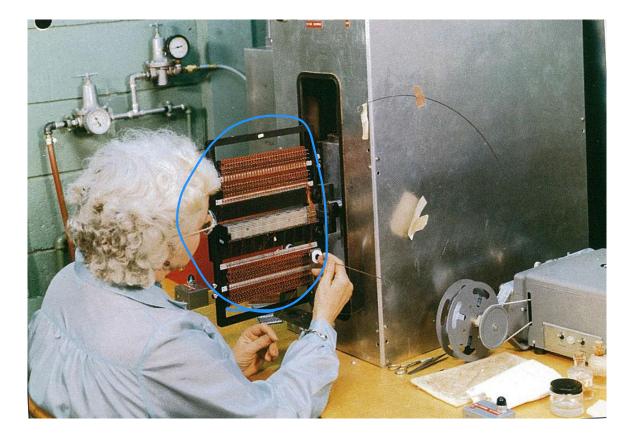
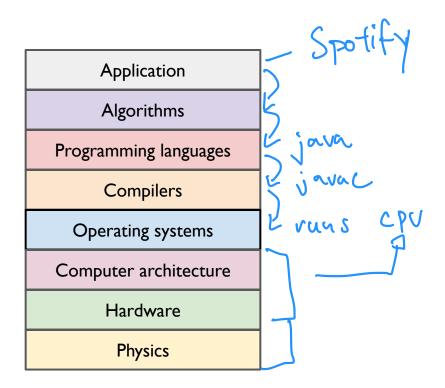

Lecture I: Introduction

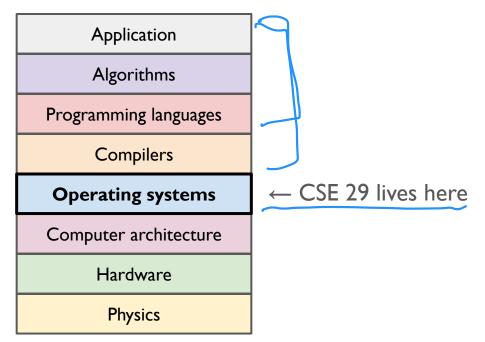
CSE 29: Systems Programming and Software Tools


Olivia Weng

MEN DISK How does a program run on a computer? write , compile , java erec java


How does a program run on a computer?

Dealing with physics straight up...



How does a program run on a computer?

How does a program run on a computer?

- Abstraction allows us to reason about complex things in a simpler way
 - \circ CS levels of abstraction (a simple version)

Why take CSE 29 and learn systems programming?

Why take CSE 29 and learn systems programming?

- Learn how computers run programs
 - Even multiple programs at a time

Supplement your programming skills with systems knowledge
 Learn how to program in C!

• Take a step from being a programmer to being an engineer

drive mechanic

Outline

• Logistics

• Intro to binary representation

Staff

- Instructor: Olivia Weng
 - Office hours: On course website
 - Co-taught with: Joe Politz
- 3 TAs shared across both classes:
 - Nick Petrone
 - Joey Wu
 - Danial Zuberi
- 4 tutors shared across both classes:
 - Miles Davis
 - Sam Gonzalez
 - Elena Tomson
 - Kevin Yang

Class Website / Syllabus

• <u>https://ucsd-cse29.github.io/ss1-25/</u>

Lecture

• Total 20 lectures

- Attendance is important and impacts your grade
 - + grade modifier: 17-20 lectures
 - no grade modifier: I 3-16 lectures
 - grade modifier: 9-12 lectures
 - One letter grade lower: 0-8 lectures

Lab

- Attendance is important and impacts your grade
 - \circ Grade details on the website

• A lot happens in lab

- Lab work is completed in groups
 - Missing lab or showing up late will slow down your group

Exams

- 3 exams that will take place in Weeks 2, 3, 4, and 5
 - @ Triton Testing Center's Computer-Based Testing Facility (CBTF)
 - Makeup exams (up to 2) will be available during Finals (Friday, August 1st)

- By July 3, sign up @ <u>prairietest.com</u> to familiarize yourself with the testing center
 - Login with your UCSD credentials
 - Familiarization session is on Thursday, July 3rd
 - Bring your UCSD ID with you

How to Pass CSE 29

• Participate in lecture and lab

- Do the problem sets on your own
 - The exams will be very similar to the problems sets

Problem sets

- First problem set will be released before lab I
 - Due before Week 2's lab
 - \circ All following problems sets will be due by the next lab

• Lab I goes over key tools you will need to complete pset I

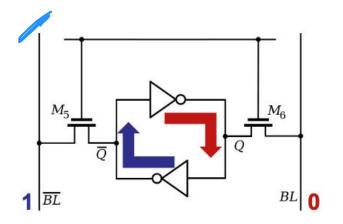
Checking in

- Fill out the welcome survey!
 - \circ Available on the website
 - Due by beginning of lab I

- I'd like to meet with everyone once throughout the summer and chat about:
 - Questions & concerns
 - Course feedback
 - What is on your mind
 - The breeze

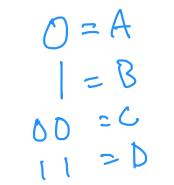
I will send out a scheduling link soon to meet everyone by the end of week 5

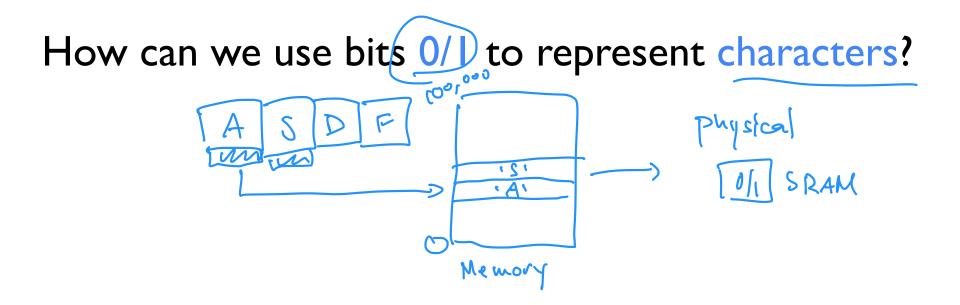
 Counts as attending 1 lecture!


Take attendance

Time to start teaching

How do we store a string of characters inside a computer?


How do computers store characters?


- SRAM cell
 - SRAM = Static random access memory
 - Stores state of a single bit: 0 or 1
 - High state: I
 - Low state: 0

• Why?

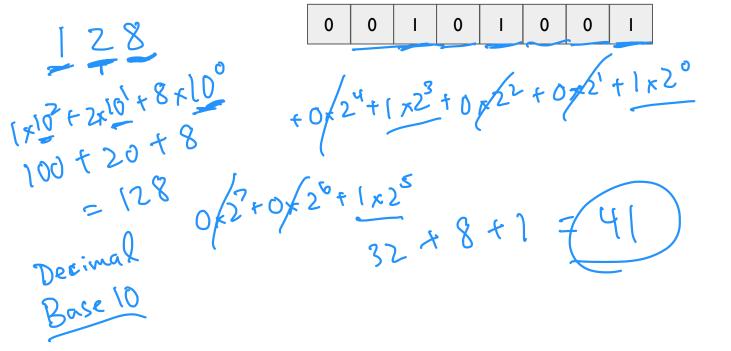
- Cheap: made of sand (silicon)
- Fast: read/write billions of times per second
- Accurate: nearly always correctly returns the stored bit
- Small: fit billions inside a computer chip

How can we use bits 0/1 to represent characters?

- Binary (0/1) number system
 - Use only 0 and 1 to represent numbers!

- Assign a number to each character
 - ASCII Encoding: [0-127] represents all English characters

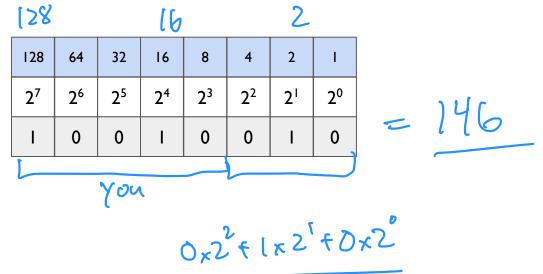
ASCII Table


e																			
										1					1				١.
			<u>.</u>		1.0			14.71	<u>0</u> 1	V			14.21	J.			~		J
Dec	H)	X UCI	Cha					Html	Chr				Html		Dec	: HX	UCI	Html C	<u>nr</u>
0	0	000	NUL	(null)				G#32;		64	40	100	@	0	96	60	140	`	5
1	1	001	SOH	(start of heading)				&# 33;										& # 97;	a
2				(start of text)				¢#34;					«#66;					b	D
3	3	003	ETX	(end of text)				#					C					c	C
4				(end of transmission)	36	24	044	\$	ş	68	44	104	D	D	100	64	144	d	; d
5	5	005	ENQ	(enquiry)	37	25	045	%	**	69	45	105	«#69;	E	101	65	145	e	; e
6	6	006	ACK	(acknowledge)	38	26	046	&	6.	70	46	106	F	F	102	66	146	f	; f
7	7	007	BEL	(bell)	39	27	047	'	1	71	47	107	G	G	103	67	147	g	; d
8	8	010	BS	(backspace)	40	28	050	¢#40;	(72	48	110	6#72;	H	104	68	150	h	; h
9	9	011	TAB	(horizontal tab)	41	29	051	6#41;)	73	49	111	6#73;	I	105	69	151	i	; i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*	74	44	112	6#74;	J	106	6A	152	j	; j
11	в	013	VT	(vertical tab)	43	2B	053	6#43;	+	75	4B	113	«#75;	K	107	6B	153	k	; k
12	С	014	FF	(NP form feed, new page)	44	2C	054	6#44;		76	4C	114	L	L	108	6C	154	l	; 1
13	D	015	CR	(carriage return)	45	2D	055	-	-	77	4D	115	6#77;	M	109	6D	155	m	; m
14	E	016	SO	(shift out)	46	2E	056	.		78	4E	116	N	N	110	6E	156	n	; n
15	F	017	SI	(shift in)	47	2F	057	6#47;	1	79	4F	117	6#79;	0	111	6F	157	o	; 0
16	10	020	DLE	(data link escape)	48	30	060	0	0	80	50	120	P	P	112	70	160	p	; p
17	11	021	DC1	(device control 1)	49	31	061	6#49;	1	81	51	121	Q	Q	113	71	161	q	p :
18	12	022	DC2	(device control 2)	50	32	062	2	2	82	52	122	R	R	114	72	162	r	; r
19	13	023	DC3	(device control 3)	51	33	063	3	3	83	53	123	¢#83;	S	115	73	163	s	; 3
20	14	024	DC4	(device control 4)	52	34	064	6#52;	4	84	54	124	6#84;	Т	116	74	164	t	; t
21	15	025	NAK	(negative acknowledge)	53	35	065	& # 53;	5	85	55	125	U	U	117	75	165	u	; u
22	16	026	SYN	(synchronous idle)	54	36	066	¢#54;	6	86	56	126	V	V	118	76	166	v	v :
23	17	027	ETB	(end of trans. block)	55	37	067	7	7	87	57	127	6#87;	W	119	77	167	w	; W
24	18	030	CAN	(cancel)	56	38	070	8	8	88	58	130	£#88;	X	120	78	170	x	; x
25	19	031	EM	(end of medium)	57	39	071	G#57;	9	89	59	131	Y	Y	121	79	171	y	Y Y
26	1A	032	SUB	(substitute)	58	ЗA	072	:	:	90	5A	132	Z	Ζ	122	7A	172	6#122;	; z
27	1B	033	ESC	(escape)	59	ЗB	073	;	;	91	5B	133	[I	123	7B	173	{	: {
28	10	034	FS	(file separator)	60	30	074	<	<	92	5C	134	6#92;	1	124	7C	174	6#124;	: 1
29	1D	035	GS	(group separator)	61	3D	075	=	=	93	5D	135]]	125	7D	175	}	; }
30	1E	036	RS	(record separator)	62	ЗE	076	>	>	94	5E	136	«#94;	~	126	7E	176	~	. ~
31	1F	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	«#95;	ŝ.	127	7F	177	6#127;	DEL
					1999					1999			5	-			Look	unTable	

- Two (binary) electrical states
 - High (on) = I
 - Low (off) = 0

• A number is an array of RAM cells in binary states:

$$0 0 1 0 1 0 0 1 = #?$$


• What number is this?

- What does each bit's binary state mean?
 - Recall:
 - High (on) = I
 - Low (off) = 0

128	64	32	16	8	4	2	Ι	
27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
0	0	I	0	I	0	0	Ι	= 41

• What number is this?

• What number is this?

128	64	32	16	8	4	2	I	
27	2 ⁶	2 ⁵	24	2 ³	22	21	20	
I	0	0	I	0	0	I	0	=

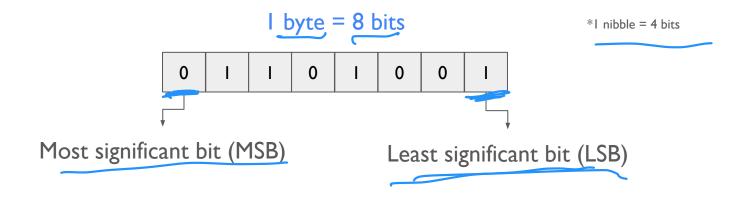
• What number is this?

4+2

27	26	2 ⁵	24	2 ³	2 ²	21	2 ⁰	
0	0	0	0	0	I	I	0	20

27	2 ⁶	25	24	2 ³	2 ²	21	2 ⁰	- 84
0	I	0	I	0	I	0	0	

64 1 6 4 4


• What number is this?

27	26	25	24	2 ³	2 ²	21	2 ⁰
0	0	0	0	0	I	I	0

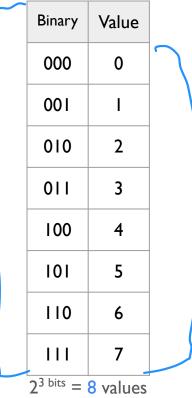
27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
0	Ι	0	I	0	I	0	0

• Some binary definitions:

• Why is it called MSB/LSB?

How many values can be represented in binary? 3 bits l bit 2 bits 3 2 values 0020 2 bits 4 values

How many values can be represented in binary? l bit 2 bits


Binary	Value
0	0
I	I

$$2^{1 \text{ bit}} = 2 \text{ values}$$

Binary	Value
00	0
01	I
10	2
11	3

$$2^{2 \text{ bits}} = 4 \text{ values}$$

3 bits Value 0

Demo I

hello world!

• print_abc_char_and_int()

• uint8_t bin8_to_dec(char bin_arr[])

С.