
Lecture 13:

Processes

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)



Process: A running program on an OS

 When you run a program on an OS (e.g., start in shell), it starts a “process”

 A process is an abstraction provided by the OS of a single isolated running program

 A process includes all of the context of the program

◆ Memory: Stack/Heap and Code

◆ Registers: Current state of execution (e.g.. what instruction in the code is running)

◆ Peripherals: Even disk access!

 Processes are completely isolated from each other:

◆ You can not overwrite another processes’ stack/heap or code!

CSE 29 – Lecture 13: Processes 2



Process State: What does an OS maintain?

 Process ID: PID – A unique number for a process

 The address space (range) in RAM for the process

 The execution state of the process (i.e., Registers)

 The hardware resources in use (e.g., open files on disk)

CSE 29 – Lecture 13: Processes 3



Context Switching: Changing processes

 The Operating System decides when to switch between processes

◆ This is known as “Context Switching” 

◆ The this is one of the big benefits of the process abstraction

 When an OS decides that a process had its time to execute

it performs the context switch

1. The OS saves all context of the running process by copying all Registers to RAM

2. The OS then copies the saved context of another process from RAM to the Registers

3. The new context switched process begins!

CSE 29 – Lecture 13: Processes 4



State diagram of a process in the OS

CSE 29 – Lecture 13: Processes 5



Creating and destroying processes

int fork(); Create a new process running the current code

◆ Creates a new process (new state for address space, PID, registers, hardware)

◆ Starts with a copy of the same memory of the running process

» Process starts with a copy of the stack, heap, and code

CSE 29 – Lecture 13: Processes 6

Parent process

Parent/child processChild process

Child process



Fork example

pid_t pid;
pid = fork(); /* create a new child process 
print("pid = %d\n", pid); /* both parent and child execute this */

CSE 29 – Lecture 13: Processes 7



Waiting for a process to finish

CSE 29 – Lecture 13: Processes 8

int wait(pid_t pid); Wait for the child process pid to end
◆ This is called only by the parent process

◆ NULL will wait for all children to finish



Exec – Load new code in a process

int execvp(char *filename, char *argv[]);
◆ Loads new code from a binary file (filename) into the running process

◆ Starts running the main() function in that code

◆ This function never returns to the calling processes’ codebase

CSE 29 – Lecture 13: Processes 9


	Slide 1: Lecture 13: Processes
	Slide 2: Process: A running program on an OS
	Slide 3: Process State: What does an OS maintain?
	Slide 4: Context Switching: Changing processes
	Slide 5: State diagram of a process in the OS
	Slide 6: Creating and destroying processes
	Slide 7: Fork example
	Slide 8: Waiting for a process to finish
	Slide 9: Exec – Load new code in a process

