Lecture 13:
Processes

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)

CSE

Process: A running program on an OS =B

o When you run a program on an OS (e.g., start in shell), it starts a “process”

o A process is an abstraction provided by the OS of a single isolated running program

o A process includes all of the context of the program
+ Memory: Stack/Heap and Code
+ Registers: Current state of execution (e.g.. what instruction in the code is running)
+ Peripherals: Even disk access!

o Processes are completely isolated from each other:
+ You can not overwrite another processes’ stack/heap or code!

CSE 29 — Lecture 13: Processes 2

Y CSE
Process State: What does an OS maintain NIz

o Process ID: PID — A unique number for a process

o The address space (range) in RAM for the process

o The execution state of the process (i.e., Registers)

o The hardware resources in use (e.g., open files on disk)

CSE 29 — Lecture 13: Processes 3

SE

Context Switching: Changing processes 535

o The Operating System decides when to switch between processes
+ Thisis known as “Context Switching”
+ The this is one of the big benefits of the process abstraction

o When an OS decides that a process had its time to execute
it performs the context switch
1. The OS saves all context of the running process by copying all Registers to RAM
> The OS then copies the saved context of another process from RAM to the Registers
5. The new context switched process begins!

CSE 29 — Lecture 13: Processes 4

State diagram of a process in the OS

Process States

new process

Event
occurs

CSE 29 — Lecture 13: Processes

Creating and destroying processes

int fork(); Create a new process running the current code
+ Creates a new process (new state for address space, PID, registers, hardware)
+ Starts with a copy of the same memory of the running process
» Process starts with a copy of the stack, heap, and code

Parent process

Child process Parent/child process

Child process
CSE 29 — Lecture 13: Processes

Fork example

pid_t pid;
pid = fork(); /* create a new child process

print("pid = %d\n", pid); /* both parent and child execute this */
Parent (pid 12)

Parent: __ " fork ParentB}
pid=fork()
Child B
Chlld . l > g child (pld 14)
> Exact copy
Time of parent

pid: 0
CSE 29 — Lecture 13: Processes

Waiting for a process to finish

int wait(pid_t pid); Wait for the child process pid to end
+ This is called only by the parent process
o NULL will wait for all children to finish

CSE 29 — Lecture 13: Processes 8

Exec — Load new code Iin a process

int execvp(char *filename, char *argv[]);
+ Loads new code from a binary file (filename) into the running process
+ Starts running the main() function in that code
+ This function never returns to the calling processes’ codebase
Parent (pid 12) Parent (pid 12)

Child (pid 14) Child (pid 14)

execvp (..)

pid:0

CSE 29 — Lecture 13: Processes 9

	Slide 1: Lecture 13: Processes
	Slide 2: Process: A running program on an OS
	Slide 3: Process State: What does an OS maintain?
	Slide 4: Context Switching: Changing processes
	Slide 5: State diagram of a process in the OS
	Slide 6: Creating and destroying processes
	Slide 7: Fork example
	Slide 8: Waiting for a process to finish
	Slide 9: Exec – Load new code in a process

