
Lecture 5:

Integers: Sign and Size

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)

Today’s Lecture

 Review Integer Arithmetic
◆ UTF-8 Code Point Analysis

 How signed integers work in computers

CSE 29 – Lecture 5: Integers: Sign and Size 2

Demo: UTF-8 Code Point Analysis

 Big Ideas:
◆ We need to mask (and shift) bits to do code point analysis

◆ We need large size integers to store large code points (int32_t)

◆ We may run into issues with signed integers resulting in neg. nums!

CSE 29 – Lecture 5: Integers: Sign and Size 3

Negative Integers in Computers

 Integers are stored as binary numbers; binary has no sign (+/-)!

◆ e.g., 1 0 1 0 = 1x23 + 0x22 + 1x21 + 0x20 = 10

 Must encode somehow in the binary digits that a number is neg

 We need a way that is efficient (doesn’t waste bits) and simple

to implement in the hardware of a CPU

CSE 29 – Lecture 5: Integers: Sign and Size 4

Sign Magnitude – Simple but inefficient

 The simplest way to do this would be to reserve a bit for the sign

 Inefficient both in terms of storage and hardware:

◆ Two ways to represent zero (0 and -0)

◆ Math hardware in CPU needs to handle positive and negative differently

» Adding a positive number to a negative number needs to read sign bit

» Adding positive to positive does not

CSE 29 – Lecture 5: Integers: Sign and Size 5

S 0 0

0 0 1

1 0 1

= 1

= -1

Two’s Complement

 What if we make the MSB equal to -2MSB?

◆ In other words, if the MSB is set, the number becomes negative with that magnitude

 Minimum will have higher magnitude than the maximum (by -1)

◆ Min (-128)

◆ Max (127 = 64 + 32 +16 +8 + 4 + 2 + 1)

 Only one zero, and hardware is the same as an unsigned int!

CSE 29 – Lecture 5: Integers: Sign and Size 6

-128 64 32 16 8 4 2 1

-27 26 25 24 23 22 21 20

MSB LSB

Two’s Complement compared to Unisgned

Two’s Complement has a lower max compared to unsigned (power of 2)

CSE 29 – Lecture 5: Integers: Sign and Size 7

-128 64 32 16 8 4 2 1

-27 26 25 24 23 22 21 20

MSB LSB

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 20

Max = 127

Max = 255

8 bits size (1 byte)

Examples of Two’s Complement

 Work with your neighbor to figure out what the 2’s complement value is

CSE 29 – Lecture 5: Integers: Sign and Size 8

1 0 0 1

-23 22 21 20 = -8 + 1 = -7

1 1 1 1 1

-24 23 22 21 20 = -16 + 8 + 4 + 2 + 1 = -1

Copying small int into larger size int

 Need to handle copying a smaller 2’s complement int into a larger one

short int a_s = -1;

int a = a_s;

printf(“a=%d a_s=%d\n”, a_s, a);

a=-1 a_s=-1

 Just copying the bits into the LSBs of the larger size won’t work:

CSE 29 – Lecture 5: Integers: Sign and Size 9

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

= -1

= 255 

Sign extension in 2’s complement

CSE 29 – Lecture 5: Integers: Sign and Size 10

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= -1

= -1

[When copying, extend the sign bit]

Data types in typically used in C

CSE 29 – Lecture 5: Integers: Sign and Size 11

 Integer data types

◆ char = ‘A’ (1 byte – max 127) - Signed

◆ int/int32_t = 42 (4 bytes – max 2 billion) - Signed

◆ unsigned char = (1 byte – max 255) - Unsigned

◆ unsigned int/uint32_t = (4 bytes - max 4 billion)

	Slide 1: Lecture 5: Integers: Sign and Size
	Slide 2: Today’s Lecture
	Slide 3: Demo: UTF-8 Code Point Analysis
	Slide 4: Negative Integers in Computers
	Slide 5: Sign Magnitude – Simple but inefficient
	Slide 6: Two’s Complement
	Slide 7: Two’s Complement compared to Unisgned
	Slide 8: Examples of Two’s Complement
	Slide 9: Copying small int into larger size int
	Slide 10: Sign extension in 2’s complement
	Slide 11: Data types in typically used in C

