Lecture 5:
Integers: Sign and Size

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)

Today’s Lecture

n Review Integer Arithmetic
+ UTF-8 Code Point Analysis

n How signed integers work in computers

CSE 29 — Lecture 5: Integers: Sign and Size 2

5
Demo: UTF-8 Code Point Analysis w

» Big ldeas:
+ We need to mask (and shift) bits to do code point analysis

+ We need large size integers to store large code points (int32_t)
+ We may run into issues with signed integers resulting in neg. nums!

CSE 29 — Lecture 5: Integers: Sign and Size 3

]

. " /
Negative Integers in Computers w

o Integers are stored as binary numbers; binary has no sign (+/-)!
e€.9,1010=1x23+0x22+ 1x2" + 0x2° =10

o Must encode somehow in the binary digits that a number is neg

o We need a way that is efficient (doesn’t waste bits) and simple
to implement in the hardware of a CPU

CSE 29 - Lecture 5: Integers: Sign and Size 4

4

Sign Magnitude — Simple but inefficient

o The simplest way to do this would be to reserve a bit for the sign

s 0 0
0 0 1=1
1T 0 1=+

o Inefficient both in terms of storage and hardware:
+ Two ways to represent zero (0 and -0)
+ Math hardware in CPU needs to handle positive and negative differently
» Adding a positive number to a negative number needs to read sign bit

» Adding positive to positive does not

CSE 29 — Lecture 5: Integers: Sign and Size 5

Two’'s Complement

- What if we make the MSB equal to -2MSB?
+ Inother words, if the MSB is set, the number becomes negative with that magnitude

MSB LSB
-128 | 64 | 32 16 8 4 2 1
27 | 25 2° 24 23 22 21 20

o Minimum will have higher magnitude than the maximum (by -1)
+ Min (-128)
o Max (127 =64 +32+16+8 +4 +2 + 1)

o Only one zero, and hardware is the same as an unsigned int!
CSE 29 - Lecture 5: Integers: Sign and Size

Two's Complement compared to Unisgned

f'\}o

J

3

Two’s Complement has a lower max compared to unsigned (power of 2)

MSB LSB
-128 | 64 | 32 16 8 4 2 1
27 | 26 2° 24 23 22 21 20
128 | 64 | 32 16 8 4 2 1
27 26 2° 24 23 22 21 20

8 bits size (1 byte)

CSE 29 - Lecture 5: Integers: Sign and Size

Max = 127

Max = 255

Examples of Two’'s Complement

o Work with your neighbor to figure out what the 2's complement value is

CSE 29 - Lecture 5: Integers: Sign and Size

1 0 0 1

28| 022 | 20| 20 |= -8+1 =-7

1 1 1 1 1

24028 | 22 | 20| 20 | =16+8+4+2+1 =41

Copying small int into larger size int

o Need to handle copying a smaller 2’s complement int into a larger one
shortinta_s=-1,;
inta=a_s;
printf(“a=%d a_s=%d\n”, a_s, a);
a=-la s=-1

o Just copying the bits into the LSBs of the larger size won’t work:

1111111111 =-
ojojofojojojojo0o|1{111{1}1(1]1}1|=2506

CSE 29 — Lecture 5: Integers: Sign and Size 9

Sign extension in 2's complement

1111111111171 (11111111111 =-1
[When copying, extend the sign bit]

CSE 29 — Lecture 5: Integers: Sign and Size 10

Data types in typically used in C

» Integer data types
o char =‘A’ (1 byte—max 127) - Signed
s int/int32_t =42 (4 bytes — max 2 billion) - Signed
+ unsigned char = (1 byte — max 255) - Unsigned
+ unsigned int/uint32_t = (4 bytes - max 4 billion)

CSE 29 - Lecture 5: Integers: Sign and Size

11

	Slide 1: Lecture 5: Integers: Sign and Size
	Slide 2: Today’s Lecture
	Slide 3: Demo: UTF-8 Code Point Analysis
	Slide 4: Negative Integers in Computers
	Slide 5: Sign Magnitude – Simple but inefficient
	Slide 6: Two’s Complement
	Slide 7: Two’s Complement compared to Unisgned
	Slide 8: Examples of Two’s Complement
	Slide 9: Copying small int into larger size int
	Slide 10: Sign extension in 2’s complement
	Slide 11: Data types in typically used in C

