
Lecture 4:

Bit Operations and UTF-8 (Unicode!)

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)

Accessing individual bits in C data types

It is possible to access individual bits of integer data types in C

◆ char and int (as well as long and short modifiers)

◆ You can not do bit operations on floating point numbers (float and double)

There are special mathematical operators in C for doing operations on bits

◆ & - AND

◆ ^ - XOR

◆ | - OR

◆ >> - Shift Right

◆ << - Shift Left

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 2

How bit operations work: AND

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 3

char a = 0x1; // 00000001

char b = 0x5; // 00000101

// AND each bit of the two integers together

char a_and_b = a & b;

// 00000001

// & 00000101

// -----------

// 00000001

printf(“%d\n”, a_and_b); // What will the output be?

Masking: use case for bitwise AND

 Masking:

◆ Selecting specific individual bits out of a binary representation of a number

◆ Example:

» first_four_bits(0b01010101) = ?

» last_four_bits(0b00000011) = ?

» first_four_bits(192) = ?

» first_four_bits(last_four_bits(______));

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 4

How do we implement masking?

char first_four_bits(char c) {

 return c & 0b11110000;
}

char last_four_bits(char c) {

 return c & 0b00001111;
}

◆ Using the bitwise AND operator & we can select specific bit positions to view

◆ The bits selected come from the pattern of 1’s that the variable is &’ed with

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 5

Demo: Masking used in practice!

 Big Idea:
◆ Using masking, we can inspect (print) each individual bit in memory!

◆ Doing this requires changing the mask over time

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 6

We are ready to understand ASCII++

 How to handle the thousands of characters used in languages around the world?

◆ ASCII does not define:

»Spanish: é

»Chineese: 中

»Emoji:

»And many more…
 256 bit patterns (one byte) is not enough to represent all characters!

 Challenge: Millions of lines of code were written that assumed one byte ASCII chars

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 8

Solution - UTF-8: Introduced in

at a conference in San Diego

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 9

Solution: Bit flags!

 Terminology… “Code Point”:

◆ A code point is an integer representing a character (e.g., 65 == ’A’)

 Normal ASCII Code Point: Highest order bit of byte is 0xxxxxxx

 Multi-byte Code Point: Highest order bit of byte is 1xxxxxxx
 First byte of character dictates code point length:

◆ 11xxxxxx = 2 bytes

◆ 111xxxxx = 3 bytes

◆ 1111xxxx = 4 bytes

 Bytes in the middle (and end) start with:

◆ 10xxxxxx

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 10

Code point construction from multi-byte

 é = 0b11000011 0b10101001

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 11

2 bytes continue

000011101001 = 233
The Code Point

Extracting Code Point

int32_t code_point_2(char c1, char c2) {

 char part1 = c1 & 0b00011111;

 char part2 = c2 & 0b00111111;

 return (c1 * 64) + c2;

}

char eacc = ”é”; // UTF-8 char so it will be multiple bytes!

code_point_2(eacc[0], eacc[1]) = 233;

CSE 29 – Lecture 4: Bit Operations and UTF-8 (Unicode!) 12

	Slide 1: Lecture 4: Bit Operations and UTF-8 (Unicode!)
	Slide 2: Accessing individual bits in C data types
	Slide 3: How bit operations work: AND
	Slide 4: Masking: use case for bitwise AND
	Slide 5: How do we implement masking?
	Slide 6: Demo: Masking used in practice!
	Slide 8: We are ready to understand ASCII++
	Slide 9: Solution - UTF-8: Introduced in at a conference in San Diego
	Slide 10: Solution: Bit flags!
	Slide 11: Code point construction from multi-byte
	Slide 12: Extracting Code Point

