Lecture 4.
Bit Operations and UTF-8 (Unicode!)

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)

CSE

UCSD

Accessing individual bits in C data types

It is possible to access individual bits of integer data types in C
+ char and int (as well as long and short modifiers)
+ You can not do bit operations on floating point numbers (float and double)

There are special mathematical operators in C for doing operations on bits
+ &-AND
o M-XOR
L 4
L 4

L 4

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 2

How bit operations work: AND

char a =0x1; // 00000001
char b = 0x5; // 00000101

// AND each bit of the two integers together
chara_and _b=a &b;

// 00000001

// & 00000101

// 00000001

printf(“%d\n”, a_and_b); // What will the output be?
CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 3

Masking: use case for bitwise AND

o Masking:
+ Selecting specific individual bits out of a binary representation of a number
+ Example:

» first_four_bits(0b01010101) ="

» last_four_bits(0b00000011) =7

» first_four_bits(192) =7

» first_four_bits(last_four_bits());

CSE 29 - Lecture 4: Bit Operations and UTF-8 (Unicode!) 4

How do we implement masking?

char first_four_bits(char c) {
return ¢ & 0b11110000;

char last_four_bits(char c) {

return c & 0b00001111;
}

+ Using the bitwise AND operator & we can select specific bit positions to view
+ The bits selected come from the pattern of 1’s that the variable is &’ed with

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 5

Demo: Masking used in practice!

» Big ldea:
+ Using masking, we can inspect (print) each individual bit in memory!
+ Doing this requires changing the mask over time

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 6

CSE

We are ready to understand ASCI|++ UCSD

o How to handle the thousands of characters used in languages around the world?
+ ASCII does not define:

»Spanish: é

»Chineese: FH

»Emoji: §8

»And many more...

o 256 bit patterns (one byte) is not enough to represent all characters!
o Challenge: Millions of lines of code were written that assumed one byte ASCII chars

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 8

Solution - UTF-8: Introduced in
at a conference in San Diego

Hello World
or

KoAnpépo k6ope
or
ZAIZHIE AR

Rob Pike
Ken Thompson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Plan 9 from Bell Labs has recently been converted from ASCII to an ASCII-
compatible variant of Unicode, a 16-bit character set. In this paper we explain the rea-
sons for the change, describe the ch set and rep we chose, and present
the programming models and software changes that support the new text format.
Although we stopped short of full internationalization—for system error mes-
sages are in Unixese, not Japanese—we believe Plan 9 is the first system to treat the rep-

of all major I on a uniform, equal footing throughout all its software.

Introduction

The world is multilingual but most computer systems are based on English and ASCII. The release
of Plan 9 [Pike90], a new distributed operating system from Bell Laboratories, seemed a good occasion to
correct this chauvinism. It is easier to make such deep changes when building new systems than by refit-
ting old ones.

The ANSI C dard [ANSIC] ins some guid: on the matter of ‘wide’ and ‘multi-byte’
characters but falls far short of solving the myriad associated problems. We could find no literature on how
to convert a system to larger character sets, although some individual programs had been converted. This
paper reports what we discovered as we explored the problem of rep ing multilingual text at all levels

P

of an operating system, from the file system and kemel through the applications and up to the window sys-

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 9

Solution: Bit flags!

o Terminology... “Code Point”:
+ A code point is an integer representing a character (e.g., 65 =="A’)

» Normal ASCII Code Point: Highest order bit of byte is OXXXXXXX

Multi-byte Code Point: Highest order bit of byte is IXXXXXXX

First byte of character dictates code point length:
¢ 11xxxxxx =2 bytes

O

]

¢ 111xxxxx =3 bytes
¢ 1111xxxx =4 bytes

Bytes in the middle (and end) start with:

o 10X0X(XXX

O

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 10

Code point construction from multi-byte

1 é =/0b11000011/|0b10[101001

2 bytes \ continue/

000011101001 =233
The Code Point

CSE 29 — Lecture 4: Bit Operations and UTF-8 (Unicode!) 11

Extracting Code Point

int32_t code_point_2(char c1, char c2) {
char partl =cl1 & 0b00011111;
char part2 = c2 & 0b00111111;
return (cl * 64) + c2;

char eacc ="é”; // UTF-8 char so it will be multiple bytes!
code_point_2(eacc[0], eacc[1]) = 233;

CSE 29 - Lecture 4: Bit Operations and UTF-8 (Unicode!)

12

	Slide 1: Lecture 4: Bit Operations and UTF-8 (Unicode!)
	Slide 2: Accessing individual bits in C data types
	Slide 3: How bit operations work: AND
	Slide 4: Masking: use case for bitwise AND
	Slide 5: How do we implement masking?
	Slide 6: Demo: Masking used in practice!
	Slide 8: We are ready to understand ASCII++
	Slide 9: Solution - UTF-8: Introduced in at a conference in San Diego
	Slide 10: Solution: Bit flags!
	Slide 11: Code point construction from multi-byte
	Slide 12: Extracting Code Point

