
Lecture 1:

Course Introduction

CSE 29: Systems Programming and Software Tools
Aaron Schulman (Shalev)

CSE 29 – Lecture 1: Course Introduction 2

Lecture 1 Overview

 Introduce Staff

 Class overview

 Jumping right into Systems Programming

CSE 29 – Lecture 1: Course Introduction 3

Personnel

 Instructor: Aaron Schulman

◆ Office hours on course website

Co-taught with: Joe Politz

 Eight TAs and four tutors shared across both classes:

◆ Janet Vorobyeva Alex Yen Anya Chernova Miles Davis

◆ Andrew Pan Savitha Ravi Samuel Gonzalez Travis Henry

◆ Elena Tomson

◆ Rachel Lim

◆ Kruti Dharanipathi

◆ Reese Whitlock

Who am I?

CSE 29 – Lecture 1: Course Introduction 4

Swimmer

HackerDad

Former skateboarder

Networking

Researcher

Course Website / Syllabus

https://ucsd-cse29.github.io/fa25/

CSE 29 – Lecture 1: Course Introduction 5

Podcasting and async learning

 Class will not be podcast

◆ Lecture slides posted to website immediately after class

◆ Lecture attendance is strongly encouraged, especially for insight into projects

 Readings will be assigned from

 “Dive into Systems” Textbook

CSE 29 – Lecture 1: Course Introduction 6

HTML freely available at:

https://diveintosystems.org/book/

Expected Outcomes

Students who complete this course will be able to:
◆ Learn how each function call makes the world’s computers come alive!

◆ Describe how a single C program runs on a computer

◆ Read, write, debug, and test C programs

◆ Use software tools to work with C programs (e.g., GDB - GNU Debugger)

◆ Control a computer from the terminal

◆ Use effective programming practices like incremental development,
debugging, testing

◆ Describe how multiple programs can run at the same time on a computer

◆ Learn how to avoid basic security vulnerabilities in low-level code

CSE 29 – Lecture 1: Course Introduction 7

Logistics

 Big Assignments Due on even weeks [2, 4, 6, 8, 10]

◆ Mon – Problem set due

◆ Thu – Programming assignment due

 Labs every week

 Exams weeks [3, 6, 9] (45min)

◆ Taken at the computer-based testing facility

 Multiple tries!

◆ Assignments: Resubmit ~2 weeks after deadline to improve score

◆ Exams: Finals week exam makeups (2hr)

 Discussion

◆ Go over problem sets

CSE 29 – Lecture 1: Course Introduction 8

CSE 29 – Lecture 1: Course Introduction 9

How to Pass CSE 29

 Attend lecture / discussion

◆ But the material is in the book anyway, and the slides are posted online

◆ Lecture is a great dedicated time slot to learn, and I will present concepts in an

accessible way and connect to practical CS programming!

◆ If you can not attend a lecture, please make a friend and ask for their notes

 Do the projects

◆ But maybe I can just have ChatGPT do them for me?

◆ Excellent practice for the exams, and assignments help with the project

◆ Senior CS folks in industry report that the skills you get from this course will

follow you throughout your career. LLMs can write code, but not be a CS!

Week 0 Announcements

 Lab attendance is required and teaching terminal-based tooling happens
there, make sure to go to lab

 Submit the welcome survey before lab on Tuesday of week 1

 Assignments, quizzes, and other things with deadlines will start in week 1

 Try to sign into PrarieLearn (https://us.prairielearn.com/)
◆ Quizzes and Exams will use the PrarieLearn platform

CSE 29 – Lecture 1: Course Introduction 10

https://ucsd-cse29.github.io/fa24/FILL
https://us.prairielearn.com/

Demo

How do we store a string of

characters inside a computer?

CSE 29 – Lecture 1: Course Introduction 11

What happens when you press a key?

CSE 29 – Lecture 1: Course Introduction 12

A S D F

Memory: Last Few Keys You Typed (i.e., Array)

A S

D F

A S

D F

A S

D F

A S

D F

How do computers store characters?

CSE 29 – Lecture 1: Course Introduction
13

A S

D F

SRAM Cell: Stores state of a single bit [1 or 0]

Cheap!

◆ Made of sand (silicon)

Fast!

◆ Read/write billions of times per second

Accurate!

◆ Nearly always correctly returns the stored bit

Small!
◆ We can fit billions of them inside of a computer chip

1 0

Enable

How do we represent characters as bits?

1. Each character is assigned a number that represents it

◆ ASCII Encoding: [0-127] represents all English Characters

2. Each number is assigned a set of bits that represent it

◆ Binary numbering system

CSE 29 – Lecture 1: Course Introduction 14

ASCII Table

CSE 29 – Lecture 1: Course Introduction 15

Logically, how is a number represented?

CSE 29 – Lecture 1: Course Introduction 16

Two (Binary) electrical states:

High Low

on off

1 0

A number is an array of RAM cells with binary states:

0 1 0 1 1 0 0 11 byte

= 8 bits

LSBMSB

CSE 29 – Lecture 1: Course Introduction 17

Converting integers to/from binary arrays

0

1

1 bit

2 values: 21

2 bits

4 values: 22

0 0

0 1

1 0

1 1

=0

=1

=2

=3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

=0

=1

3 bits
=0

=1

8 values: 23

=2

=3

=4

=5

=6

=7

What does each index of a bit array mean?

CSE 29 – Lecture 1: Course Introduction 18

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 20

LSBMSB

1 byte = 8 bits

Bit array -> Integer conversions

1 0 1 0 = 1x23 + 0x22 + 1x21 + 0x20

 = 8 + 0 + 2 + 0 = 10

1 1 1 0

CSE 29 – Lecture 1: Course Introduction 19

= 1x23 + 1x22 + 1x21 + 0x20

= 8 + 4 + 2 + 0 = 14

	Slide 1: Lecture 1: Course Introduction
	Slide 2: Lecture 1 Overview
	Slide 3: Personnel
	Slide 4: Who am I?
	Slide 5: Course Website / Syllabus
	Slide 6: Podcasting and async learning
	Slide 7: Expected Outcomes
	Slide 8: Logistics
	Slide 9: How to Pass CSE 29
	Slide 10: Week 0 Announcements
	Slide 11: Demo
	Slide 12: What happens when you press a key?
	Slide 13: How do computers store characters?
	Slide 14: How do we represent characters as bits?
	Slide 15: ASCII Table
	Slide 16: Logically, how is a number represented?
	Slide 17: Converting integers to/from binary arrays
	Slide 18: What does each index of a bit array mean?
	Slide 19: Bit array -> Integer conversions

